BIBLIC CONTRACTOR OF CONTRACTOR CONTRACTOR

Ahmed Nasr

MSc. Automotive Engineering BSc. Renewable Energy Engineering

- Power consumption far outgrows the production.
- Capacity available from the national grid is limited and will not be expanded until **2027.**
- Scandinavian country is committed to having a **100% fossil fuel-free vehicle fleet by 2030.**
- High EV penetration level.

High EV penetration → More chargers → More load on grid → Power shortage & fluctuations

- Energy consumption and production.
- Peak demand.
- Constant loads (lighting, elevator, etc.), and connecting it to the grid.
- Identifying extra energy sources and output.
- Charging strategy (Algorithm).
- Setting time of use (TOU) pricing scheme.
- Financial Analysis.

Electricity area 4, Malmo average consumption

https://mimer.svk.se/

- 1. Mitsubishi Outlander P-HEV
- 2. Volkswagen Passat GTE
- 3. Volvo V60 PHEV
- 4. Nissan Leaf
- 5. Tesla Model S

System Architecture

- DC bus rather than AC bus
- Higher efficiency (about 10% reduction) and lower hardware costs.
- Grid depends on power of:
 - Solar panel
 - Fuel cells
 - Battery

- Zero emissions.
- Fair efficiency.
- Renewable Source.

"The devil hides in the details"

- Fuel cell is very expensive.
- Requires continuous hydrogen supply.
- Hydrogen tank volume size or electrolyzes operation.

Technology not mature yet at the moment!

- Area = 2000 m²
- Simulation of Malmo on **PVsyst.**
- Monocrystalline Solar cells
- 320 kWp

Energy

Ρ

< C

Batteries

- Capacity = 500 kWh
- **Area** = 35 m²
- Life expectancy = 7 years

Dual Charger

- DC-DC charger (DC-DAS) , DC NOT FAST CHARGER!
- Connected directly to the DC bus.
- Power = 12 kW Current = 32A Volt = 400V

Green charging zone (22:00 – 7:00 h)

Blue charging zone (7:00 – 10:00 h)

Orange charging zone (10:00 – 15.00 h)

Red charging zone (15:00 – 21:00 h)

High Priority (not time determined)

Charging Algorithm

Time of Use pricing scheme (TOU)

Average charging price in Malmo = 0.55 € /kWh

Charging Zone	€/kWh
Green	0.40
Blue	0.45
Orange	0.50
Red	0.60
High Priority (Outside the Red zone)	0.65
High Priority (In the red zone)	0.75

Component	Amount (€)
PV	120,000
Batteries	65,000
Installation/Connections	30,000
Chargers	25,000
Converters/Rectifier	60,000
Control instrumentation	20,000
Total	330,000

Assumptions to calculate break-even

	kWh/day	Average profit margin (€)	Operation cost (€)
Year 1	500	0.45	10,000
Year 2	600	0.45	15,000
Year 3	650	0.45	20,000
Year 4	700	0.45	30,000

3 Years, 6 Months

After 7 Years, batteries are dead

Technology becomes more mature leading to

- Cheaper
- Higher Efficiency

Sustainability

Lowest dependence on grid

Functionality

Replicability

Innovation

Thank You

BIBKtrD& Scan Charge & GO!