

Aqua reatment

We turn a problem into a ressource.

Re-turn on investment

Re-duce pollutants

Re-circulate resources

Re-think innovation

Henning Schmidt-Petersen, Owner, AquaGreen | City of Hamilton | 14.09.2018

Introduction to solution: Which problems does our solution address?

SDG 6: Provide sanitation facilities, and encourage hygiene at every level. We remove pathogens, xenobiotics, heavy metals and pollutants SDG 9: Foster innovation and entrepreneurship.Our Patent Pending solution is innovative, mobile and scalable

SDG 13: Greenhouse gas emissions are now 50% higher than in 1990. Using the carbon in our end product as a soil improver reduces CO2 emissions

SGD 7: Investing in clean energy sources, such as solar, wind and thermal.

We utilize the calorific value in sludge, turning it into thermal energy

SDG 12: Agriculture it the biggest user of water. Toxic waste and pollutants are disposed as landfill We remove pollutants and heavy metals and we re-circulate phosphorus and carbon as a soil improver

Applicability to retrofitting process - What do we do?

First we dry, using super heated steam, and then we pyrolyse the sludge

The energy source is the organic content in the sludge.

We utilize this calorific value in the sludge by burning the pyrolysis gasses.

...and excess thermal energy, for district- or local heating

The end product is a biochar/soil improver with plant available phosphorus, and can be processed into activated carbon (filter material)

Business case; Return of Investment

The ROI is very dependant on:

- Income streams:
 - Usage of and price for excess energy
 - Current disposal cost
 - Price and type of bio char
 - Price and type of activated carbon
 - CSR/PR/Image Value
- Manufacturing cost/-site
- Dry matter content of sludge
- Calorific value
- Size of equipment/volume processed

The **current** selling price for 100 kW solutions in Norway, produced in Norway:

Steam dryerCAD575.000Integrated solutionCAD 1.000.000

Processing cost/ton

Who are our customers?

Integration roadmap: Next steps

- AquaGreen will form a Joint Venture in Hamilton/Toronto
 - To create jobs locally
 - To create more business locally
 - To increase tax payments
- AquaGreen will consider supplying the North American market from Canada
- AquaGreen supports Future of Hamilton by providing
 - A Smart and Sustainable Technology
 - A Circular economy solution
 - A fast Return On your Investment

AquaGreen **Sludge Treatment**

We turn a problem into a ressource.

Re-duce pollutants

Re-think innovation

Re-circulate resources

Re-turn on investment

Henning Schmidt-Petersen, Owner, AquaGreen | City of Hamilton | 14.09.2018

100 kW combined steam dryer and pyrolysis. MWWT Denmark

100 kW combined steam dryer and pyrolysis, VCS Odense

100 kW Steam dryers, Norwegian customers

AquaGreen

Energy balance drying and pyrolysing 7 m³ of sludge/hour

25% dry mat		
140kg/h		٢
99% Dry mat 35kg/h 105Liter 95kWh		ŀ
16MJ/kg DN 560MJ 21kWh 16kg/h	1 156kWh	**
156kWh 116kWh 40kWh 86kWh	26% 55%	t
	99% Dry mat 35kg/h 105Liter 95kWh 16MJ/kg DM 560MJ 21kWh 16kg/h 156kWh 116kWh 40kWh	99% Dry mat 35 kg/h 105 Liter 95 kWh 16 MJ/kg DM 560 MJ 156 kWh 21 kWh 16 kg/h 156 kWh 116 kWh 40 kWh 26% 86 kWh 55%

Who is AquaGreen?

AquaGreen is a **Technology company** within the Clean-Tech area.

Our **patent pending** technology has been developed together with **DTU**, we are **located at the DTU** Campus.

Our business model is to approach new markets in **Joint Ventures**. Our first Joint Venture, **AquaGreen Norway AS**, was established in 2017 to focus on the **Nordic Aquaculture Industry**.

Our second Joint Venture is under establishment in Germany focusing on **Municipal Waste Water Treatment** and **Biogas** in Northern Europe.

How did we get started?

Industry:	Country	Year	Status
Aquaculture Industry:			
Det Grønne Iværksætterhus	Denmark	2015	Awarded
 Innovasjon Norge (Melbu) 	Norway	2015	Awarded
InnoBooster	Denmark	2016	Awarded
EuroStars	Norway/Denmark	2016	Awarded
Innovasjon Norge	Norway	2018	Pending
Municipal Wastewater Treatment:			
• MUDP	Denmark	2016	Awarded
• PCP 1 (DK)	Denmark	2016	Awarded
• PCP 2 (DK)	Denmark	2017	Awarded
• ViiRS	Denmark	2017	Awarded
• MUPD	Denmark	2018	Awarded
Others:			
Free Innovation	Denmark	2018	Awarded
Inbiom	Denmark	2018	Awarded
Erhvervsstyrelsen	Denmark	2018	Awarded
Funding applied total			CAD 4.906.000
Funding awarded total			CAD 5.512.000

Project total
10.495.000
200.000
320.000
1.300.000
8.675.000
2.990.000
11.672.000
1.075.000
216.000
5.043.000
188.000
5.150.000
2.030.000
420.000
110.000
1.500.000
24.197.000
27.187.000

ERHVERVSSTYRELSEN

The key differentiating factors

Fast Return on investment (2-6 years)

Continuous Process

Scalability, mobility (supplied in 20" containers)

Efficiency (patent pending superheated steam technology)

Process design (compact, simple and reliable)

Process control (PLC, Autonomous operation)

High

Very Higl

The key differentiating factors

- Our end product is a marketable bio-char with plant available P
 - Odourless
 - Sanitized
 - Storage stable
 - Organic
- Carbon footprint improved
 - No incineration
 - No composting

Value

- Weight is reduced with 90%
- The bio-char can be further upgraded to organic fertilizer and filter material

Activated carbon

Bio-char

Organic Biochar

AquaGreens value proposition

We Re-think Innovation

- Scalable technology and compact design
- Autonomous operation
- Innovative energy utilization
- Environmentally friendly technology

We Ensure Attractive Re-turn on Investment

- Energy cost saving technology
- Production of excess thermal energy
- Reduction of sludge disposal costs
- End product is marketable biochar

We Re-duce Volume and Pollutants

- Sludge weight and volume is reduced
- Foreign environmental pollutants are reduced
- End product is sanitized, odourless and storage safe
- Pathogens are eliminated

Re-circulate

We Re-circulate Energy and Nutrients

- Sustainable usage of embedded energy
- Steam converted to thermal energy
- Preservation of nutrients in biochar
- Phosphorus re-circulated
- Carbon as soil improver, CO2 emission reduced

Aqua reatment

We turn a problem into a ressource.

Re-duce pollutants

Re-circulate resources

Re-turn on investment

Re-think innovation