

Sludge Treatment

We turn a problem into a ressource.

Re-turn on investment

Re-duce pollutants

Re-circulate resources

Re-think innovation

Introduction to solution: Which problems does our solution address?

SDG 6: Provide sanitation facilities, and encourage hygiene at every level. We remove pathogens, xenobiotics, heavy metals and pollutants SDG 9: Foster innovation and entrepreneurship.

Our Patent Pending solution is innovative, mobile and scalable

SDG 13: Greenhouse gas emissions are now 50% higher than in 1990. Using the carbon in our end product as a soil improver reduces CO2 emissions

SGD 7: Investing in clean energy sources, such as solar, wind and thermal.

We utilize the calorific value in sludge, turning it into thermal energy

SDG 12: Agriculture it the biggest user of water. Toxic waste and pollutants are disposed as landfill
We remove pollutants and heavy metals and we re-circulate phosphorus and carbon as a soil improver

Applicability to retrofitting process - What do we do?

Impacts, What are the benefits removed other behavior Re-circular pollutants removed

Heavy metals removed or significantly reduced

DEHP

80%

Regained

25%

Business case; Return of Investment

The ROI is very dependant on:

- Income streams:
 - Usage of and price for excess energy
 - Current disposal cost
 - Price and type of bio char
 - Price and type of activated carbon
 - CSR/PR/Image Value
- Manufacturing cost/-site
- Dry matter content of sludge
- Calorific value
- Size of equipment/volume processed

The **current** selling price for 100 kW solutions in Norway, produced in Norway:

Steam dryer CAD 575.000 Integrated solution CAD 1.000.000

Indicative figures

Actual case specific figures have to be used

Who are our customers?

Integration roadmap: Next steps

- AquaGreen will form a Joint Venture in Hamilton/Toronto
 - To create jobs locally
 - To create more business locally
 - To increase tax payments
- AquaGreen will consider supplying the North American market from Canada
- AquaGreen supports Future of Hamilton by providing
 - A Smart and Sustainable Technology
 - A Circular economy solution
 - A fast Return On your Investment

Sludge Treatment

We turn a problem into a ressource.

Re-duce pollutants

Re-think innovation

Re-circulate resources

Re-turn on investment

100 kW combined steam dryer and pyrolysis. MWWT Denmark

100 kW combined steam dryer and pyrolysis, VCS Odense

100 kW combined steamdryer and pyrolysis

Installed at Vandcenter Syd in Odense.

Finansing:
Markedsmodningsfonden.

Project owner DANVA

100 kW Steam dryers, Norwegian customers

Energy balance drying and pyrolysing 7 m³ of sludge/hour

81%

Sludge Dry matter	7m³/h 0,5% dry mat
Dry matter	35 Kg/h
De-watering Wet sludge	25% dry mat 140kg/h

Drying	99% Dry mat	
Dry matter	35 kg/h	
Condensed water	105 Liter	
Energy consumption	95kWh	

Burn value	16MJ/kg DM	
Energy content	560MJ	156kWh
Energy usage	21kWh	
Bio char	16kg/h	
Produced thermal energy	156kWh	
Consumed thermal energy	116kWh	
Residual energy	40kWh	26%
Regained thermal energy	86kWh	55%

126kWh

Excess thermal energy

Who is AquaGreen?

AquaGreen is a **Technology company** within the Clean-Tech area.

Our **patent pending** technology has been developed together with **DTU**, we are **located at the DTU** Campus.

Our business model is to approach new markets in **Joint Ventures**. Our first Joint Venture, **AquaGreen Norway AS**, was established in 2017 to focus on the **Nordic Aquaculture Industry**.

Our second Joint Venture is under establishment in Germany focusing on **Municipal Waste Water Treatment** and **Biogas** in Northern Europe.

How did we get started?

Industry:	Country	Year	Status	Project total
Aquaculture Industry:				10.495.000
 Det Grønne Iværksætterhus 	Denmark	2015	Awarded	200.000
 Innovasjon Norge (Melbu) 	Norway	2015	Awarded	320.000
 InnoBooster 	Denmark	2016	Awarded	1.300.000
 EuroStars 	Norway/Denmark	2016	Awarded	8.675.000
 Innovasjon Norge 	Norway	2018	Pending	2.990.000
Municipal Wastewater Treatment:				11.672.000
• MUDP	Denmark	2016	Awarded	1.075.000
 PCP 1 (DK) 	Denmark	2016	Awarded	216.000
 PCP 2 (DK) 	Denmark	2017	Awarded	5.043.000
 ViiRS 	Denmark	2017	Awarded	188.000
• MUPD	Denmark	2018	Awarded	5.150.000
Others:				2.030.000
 Free Innovation 	Denmark	2018	Awarded	420.000
• Inbiom	Denmark	2018	Awarded	110.000
 Erhvervsstyrelsen 	Denmark	2018	Awarded	1.500.000
Funding applied total			CAD 4.906.000	24.197.000
Funding awarded total			CAD 5.512.000	27.187.000

The key differentiating factors

Fast Return on investment (2-6 years)

Continuous Process

Scalability, mobility (supplied in 20" containers)

Efficiency (patent pending superheated steam technology)

Process design (compact, simple and reliable)

Process control (PLC, Autonomous operation)

High

The key differentiating factors

- Our end product is a marketable bio-char with plant available P
 - Odourless
 - Sanitized
 - Storage stable
 - Organic
- Carbon footprint improved
 - No incineration
 - No composting

- Weight is reduced with 90%
- The bio-char can be further upgraded to organic fertilizer and filter material

AquaGreens value proposition

We Re-think Innovation

- Scalable technology and compact design
- Autonomous operation
- Innovative energy utilization
- Environmentally friendly technology

We Ensure Attractive Re-turn on Investment

- Energy cost saving technology
- Production of excess thermal energy
- Reduction of sludge disposal costs
- End product is marketable biochar

We Re-duce Volume and Pollutants

- Sludge weight and volume is reduced
- Foreign environmental pollutants are reduced
- End product is sanitized, odourless and storage safe
- Pathogens are eliminated

We Re-circulate Energy and Nutrients

- Sustainable usage of embedded energy
- Steam converted to thermal energy
- Preservation of nutrients in biochar
- Phosphorus re-circulated
- Carbon as soil improver, CO2 emission reduced

Sludge Treatment

We turn a problem into a ressource.

Re-duce pollutants

Re-circulate resources

Re-turn on investment

Re-think innovation