Smart District Data Infrastructure (SDDI)

Mandana Moshrefzadeh, Prof. Thomas H. Kolbe
madnana.moshrefzadeh@tum.de
thomas.kolbe@tum.de

Technical University of Munich
Motherboard City - Helsinki

The Smart District Data Infrastructure
Challenges

• Many strategies – very technology-focused
• Smart City initiatives are often Top-Down & Proprietary
 • A (IT) company together with city is setting up the system
• Incompatibility of services due to a lack of well-designed information infrastructure
• There are many other stakeholders who are interested in being involved
 • Municipality (incl. Planning office, Environmental agency, security and emergency services) and their service providers
 • Citizens; Owners (companies); policy makers
 • Utility service provider; Transportation service providers;
Current situation

- Satellite sensors
- Citizens
- Real estate firms
- City Dashboard
- Solar potential analysis
- Municipalities
- Weather sensors
- Energy demand estimation
- Virtual 3D City model
- Flood simulation
- Networks
- Energetic building refurbishment
- Transportation service providers
- Air quality monitoring
- Utility service providers
- Crowd management
- Pedestrian flow simulation

The Smart District Data Infrastructure
Key aspects for data integration

• A uniform and standard data framework
• Consideration of roles and interests of various stakeholders
• Use of open standards to guarantee the interoperability
• Avoiding data redundancy
• Vendor neutral & based on international standards
• Consideration of Security and privacy
• High degree of flexibility and extendibility
• Usage of Open Source & Commercial Off-The-Shelf components
• Scalability and Transferability
Complex Distributed System

- Satellite sensors
- Citizens
- Solar potential analysis
- Municipality
- Weather sensors
- Real estate firms
- Energetic building refurbishment
- City Dashboard
- Citizen engagement
- Networks
- Virtual 3D City model
- Flood simulation
- Transportation service providers
- Energy demand estimation
- Utility service providers
- Crowd management
- Air quality monitoring
- Pedestrian flow simulation

The Smart District Data Infrastructure
Smart District Data Infrastructure (SDDI)

Actors
- Citizens
- Municipality
- Utility service providers
- Real estate firms
- Transportation service providers

Applications
- Citizen engagement
- Air quality monitoring
- Energetic building refurbishment
- City Dashboard
- Crowd management

Sensors and Sensor data
- Satellite sensors
- Weather sensors

Virtual District Model
- Networks
- Virtual 3D City model

Urban Analytics Toolkit
- Energy demand estimation
- Solar potential analysis
- Pedestrian flow simulation
- Noise dispersion simulation
- Flood simulation

The Smart District Data Infrastructure
Smart District Data Infrastructure (SDDI)

Actors
- Citizens
- Municipality
- Utility service providers
- Real estate firms
- Transportation service providers

Applications
- Citizen engagement
- Air quality monitoring
- Energetic building refurbishment
- City Dashboard
- Crowd management
- Crowd management
- Pedestrian flow simulation
- Noise dispersion simulation
- Flood simulation
- Energy demand estimation
- Solar potential analysis

Virtual District Model
- Virtual 3D City model
- Networks

Catalogue Service CS/W
- Registry

Sensors and Sensor data
- Satellite sensors
- Weather sensors

Urban Analytics Toolkit
- Energy demand estimation
- Solar potential analysis
- City Dashboard
Smart District Data Infrastructure Process

ISO 10746 – “Information technology — Open Distributed Processing – Reference model“ (ODP-RM)
Case Study
Queen Elizabeth Olympic Park (QEOP)
Queen Elizabeth Olympic Park (QEOP)

► A sporting complex built for the 2012 Summer Olympics
► Four key themes:
 ● Resource Efficient Buildings
 ● Energy Systems
 ● Smart Park / Future Living
 ● Data Architecture and Management
SDDI Process – Listing data items (QEOP)

- Energy Systems
 - Building Models
 - Energy Demands
 - Energy Networks
- Resource Efficient Buildings
 - Road Networks
 - 3D Visualization Model
 - PV Energy Production Meters
- Visitor Traffic Management
 - Utility Networks
 - Noise Quality
 - Visitor Tracking
 - Air Quality
 - Crowd Density Meter
 - Current Events
 - Weather Data
 - Technical & Cost Data
 - Future Events
 - Energy Consumption Meter
 - Venues
 - Temperature
 - Temperature Meter

The Smart District Data Infrastructure
SDDI Process – Listing data items (QEOP)

- Energy Systems
 - Building Models
 - Energy Demands
 - Energy Networks
- Resource Efficient Buildings
 - 3D Visualization Model
 - Utility Networks
- Visitor Traffic Management
 - Road Networks
 - Venues

Virtual District Model

Agents/Environment

- Energy Networks
 - Temperature Meter
- Temperature

- PV Energy Production Meters
- Crowd Density Meter
- Visitor Tracking
- 3D Visualization Model
- Air Quality
- Visitor Tracking
- Technical & Cost Data
- Future Events
- Weather Data
- Park Visitors
- Noise Quality
- Current Events
- Visitor Tracking
- Weather Data
- Visitors

Sensors
Example SDDI Configuration

Sensor Type A
- Software API (Proprietary A)
 - SOS

Sensor Type B
- Software API (Proprietary B)
 - SOS

Sensor Type C
- Software API (Proprietary C)
 - SOS

App #1
- Pedestrian Flow Simulation
 - Proprietary API
 - CS/W API

WFS B (e.g. Roads)
- Proprietary Software API
 - Ordnance Survey Data

WFS A (e.g. Buildings)
- Proprietary Software API
 - 3DCityDB

Catalog Service CS/W
- Proprietary or Open source solution
 - Registry

Data
- OGC Observation & Measurement
 - Query
 - Register
 - Metadata

OGC CityGML

Proprietary or Open source solution

The Smart District Data Infrastructure
Example SDDI Configuration

- Consider a network of distributed systems
- Interoperable access to proprietary data resources, sensors and systems
- Access to the registered districts resources (databases, sensors, services, etc.)
- Standard-based solution
- Plug and play ready applications
- Cloud-based implementation possible
- Data and functionalities remain by their owners